菜单
  

    图像分割评价可分为两种情况,第一,比较多个算法分割给定图像的性能,以帮助在具体分割应用中选取合适的算法;第二,掌握各算法在不同分割情况中的表现,通过选择算法参数来适应分割具有不同内容的图像和分割在不同条件下采集到的图像需要。这两方面的内容是相互关联的,分割评价不仅可以提高现有算法的性能,对研究新的技术也具有指导意义。图像分割评价指标要满足三点为最佳,一是相邻区域必须有不同的各向同性特征值,二是区域内部是简单的,没有太多的洞,三是区域必须是均匀或各向同性的。对评价方法的基本要求有三点,第一,应选取通用的图像进行测试使评价结果具有可比性;第二,应采用定量的客观的性能评价准则;第三,应该具有通用性,适于评价不同类型的分割算法并且适合各种应用领域情况。
    图4.1  图像分割评价方法示意图
        由上图可见,直接评价法研究图像分割所用的算法本身,通过分析它的原理、性质、特点,从而推断和评判算法的优劣;而间接评价法是去研究输出分割图的质量,或由输入图得到的参考图与输出图的差别从而通过归纳总结得到分割算法的性能。同样要评价分割技术,各种方法的难易程度也不同。用间接法评判算法需要用算法对图像进行分割实验以得到输出分割图(有时还需获得参考图),而用直接法则只需要对算法本身进行分析就可以。
    4.2    彩色图像的分割程序处理
     图像分割技术应用于图像的预处理,主要运用在灰度转换、灰度拉伸灰度拉伸以及基于DcT变换的平滑经典的边缘检测方法。灰度转换或灰度化处理是将彩色图像转变成灰度图像的过程,包含亮度信息,不包含色彩信息的图像,通常将灰度分成24位真彩色图像,每一个象素包含红(R)、绿(G)、蓝(B)三个分量,通过灰度转换可为计算机快速处理图像信息提供了必要的条件。灰度拉伸是指根据灰度直方图的分布有选择的拉伸某段灰度区间以改善输出图像。例如,如果图像灰度集中在较亮的区域而导致图像偏亮,可以用灰度拉伸功能来压缩物体灰度去。同时,可以用灰度拉伸功能来拉伸物体灰度区间以改善图像因在较暗的区域而导致图像偏暗的情况。采用分段式的线性拉伸方程强化前景和背景的灰度差异,增强前景区域,从而增加前景和背景的对比度。
    4.2.1    彩色图像K-均值聚类分割
     
    图4.2  “彩色图像K-均值聚类分割”对话框
    对话框代码如下:
            private void start_Click(object sender, EventArgs e)
            {
                this.DialogResult = DialogResult.OK;
            }

            private void close_Click(object sender, EventArgs e)
            {
                this.Close();
            }

            public byte GetNum
            {
                get
                {
                    return (byte)numClusters.Value;
                }
            }


     
  1. 上一篇:ASP.net+sqlserver在线考试管理系统设计与实现
  2. 下一篇:Linux服务器数据安全方案的设计与实现
  1. 基于MATLAB的图像增强算法设计

  2. jsp+sqlserver高校二手商品交...

  3. 基于Kinect的手势跟踪与识别算法设计

  4. JAVA基于安卓平台的医疗护工管理系统设计

  5. java+mysql设备监控记录的大...

  6. 基于核独立元分析的非线...

  7. 基于Hadoop的制造过程大数据存储平台构建

  8. 杂拟谷盗体内共生菌沃尔...

  9. 中考体育项目与体育教学合理结合的研究

  10. 十二层带中心支撑钢结构...

  11. 河岸冲刷和泥沙淤积的监测国内外研究现状

  12. 电站锅炉暖风器设计任务书

  13. 大众媒体对公共政策制定的影响

  14. 乳业同业并购式全产业链...

  15. 当代大学生慈善意识研究+文献综述

  16. java+mysql车辆管理系统的设计+源代码

  17. 酸性水汽提装置总汽提塔设计+CAD图纸

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回