基于石墨烯的超级电容器已成为近几年的研究热点,本文对石墨烯进行氮掺杂的方法改性,同时在上面负载金属氧化物MnO2和导电高分子聚吡咯,最后合成性能优异的三元复合物。具体合成方法是:首先,选择氟硼酸铵为氮源掺杂,利用氧化石墨烯和氯化锰的氧化还原反应,用水热法先合成石墨烯/MnO2二元复合物;之后,用原位聚合的方法将聚吡咯负载到上一步已经合成好的二元复合物上,整个反应体系为冰水浴。并分别以H2SO4和Na2SO4溶液作为测试液,对其进行循环伏安、交流阻抗、充放电电化学性能测试。最终,在H2SO4溶液中,所合成的三元复合物的比电容值为446F/g,比单纯的PPy和石墨烯/MnO2的比电容值都高。这样的测试结果证明了以氮掺杂后的石墨烯合成的三元复合物具有更加优良的电化学性能。67673
毕业论文关键词 石墨烯 氮掺杂石墨烯 聚吡咯 超级电容器 电化学性能测试
Title Synthesis and Characterization of Graphene/MnO2/Polypyrrole Ternary Supercapaciton’s Electrode Materials
Abstract
The study on graghene-based supercapacitor becomes hotter recently. In this passage, the innovative method to improve the properties of the graphene-based electrode materials is using the N-doped graghene as the ingredient. At the same time, Manganese oxide(MnO2) and conducting polymer polypyrrole (PPy) were also anchored on the graghene sheet in order to get the electrode material with better electrochemical performance. As for the synthesize process, it can be pided into two steps: the fisrt step is to get the N-doped graghene oxide using H3BF4N as the dopent, and then synthesize the graghene/MnO2 by the redox reaction between graghene oxide and manganese chloride using hydrothermal method. And then, PPy can be added on the graghene/MnO2 composited in the fisrt step via in-situ chemical polymerization in the 0 ℃ water. The as-obtained graphene/MnO2/PPy composites were characterized via XRD and observed with TEM. The electrochemical property was tested by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The results indicated that the ternary composites were successfully synthesized during two-step way, with enhanced electrochemical performance. The specific capacitance is up to 446F/g.
Keywords Graghene N-doped Graghene Polypyrrole Supercapacitor
Electrochemical Performance Test
目 次
1 绪论 1
1.1 引言 1
1.2 石墨烯的研究 2
1.2.1 石墨烯简介 2
1.2.2 石墨烯的制备方法 3
1.3 氧化石墨烯 4
1.3.1 氧化石墨烯简介 4
1.3.2 氧化石墨烯的制备方法 5
1.3.3 氮掺杂的氧化石墨烯 5
1.4 聚吡咯 5
1.4.1 聚吡咯的性质与结构 5
1.4.2 聚吡咯的制备 6
1.5 金属氧化物改性材料的简介 6
1.5.1 金属氧化物 7
1.5.2 二氧化锰 7
1.6 主要工作介绍