[32] Goodwin, D. G., ―Cantera C++ user‘s guide‖ Tech. rep., California Institute of Technology, October, 2002.
[33] Goodwin, D. G., ―Defining phases and interphases – cantera 1.5‖, Tech. rep., California Institute of Technology, August,2003
[34] McBride, B. J., Zehe, M. J., and Gordon, S., ―NASA Glenn coefficients for calculating thermodynamic properties of inpidual species‖, Tech. Rep. NASA TP-2002-
211556, National Aeronautics and Space Administration, September, 2002.
[35] Bishnu, P. S., Hamiroune, D., and Metghalchi, M., ―Development of constrained
equilibrium codes and their applications in nonequilibrium thermodynamics‖. Trans. ASME Journal of Energy Ressources and Technology, Vol. 123, 2001, pp. 214–220.
[36] Andersson, M., Johansson, B., Hultquist, A., and Nöhre, C., ―A real time NOx model for convetional and partially premixed combustion‖. SAE paper, 2006-01-0195,2006.
[37] Lide, D. R., ed., “Handbook of Chemistry and Physics‖, 78th ed. CRC Press LLC,
1997.
[38] Campbell, C. T., ―Towards tomorrow‘s catalysts‖ Nature, Vol. 432, 2004, pp. 282–
283.
[39] Stegelmann, C., Andreasen, A., and Campbell, C. T., ―Degree of rate control:
How much the energies of intermediates and transition states control rates‖. Journal of the American Chemical Society, Vol. 131(23), 2009, pp 8077–8082.
[40] Cerru, F., Kronenburg, A., and Lindstedt, R., ―A systematically reduced reaction
mechanism for sulphur oxidation‖ Proc.Combust. Inst., Vol. 30, 2005, pp. 1227–
1235.
[41] Cerru, F., Kronenburg, A., and Lindstedt, R., ―Systematically reduced chemical
mechanisms for sulfur oxidation and pyrolysis‖. Combust. Flame, Vol. 146, 2006, pp. 437–455.
[42] Wang, X., Jin, Y. G., Suto, M., and Lee, L. C., ―Rate constants of the gas phase
reaction of SO3 with H2O‖. J. Chem. Phys., Vol. 89, 1988, pp. 4853–4860.
[43] Hofmann, M., and von Ragué Schleyer, P., ―Acid rain: Ab Initio investigation of the H2O⋅SO3 complex and its conversion into H2SO4‖. J. Am. Chem. Soc., Vol. 116, 1994, pp. 4947–4952.
[44] Lovejoy, E. R., Hanson, D. R., and Gregory Huey, L., ―Kinetics and production of the gas-phase reaction of SO3 with water‖. J. Phys. Chem., Vol. 100, 1996, pp. 19911– 19916.
[45] Jayne, J. T., Pöschl, U., Chen, Y.-M., Dai, D., Molina, L. T., Worsnop, D. R., Kolb,
C. E., and Molina, M. T., ―Pressure and temperature dependency of the gas phase
reaction of SO3 with H2O and the heterogeneous reaction of SO3 with H2O/H2SO4 surfaces‖. J. Phys. Chem. A., Vol. 101, 1997, pp. 10000–10011.
[46] Livbjerg, H., and Villadsen, J., ―Kinetics and effectiveness factor for SO2 oxidation on an industrial vanadium catalyst‖. Chemical Engineering Science, Vol. 27(1), 1972, pp. 21 – 38.
[47] Froment, G. F., and Bischoff, K. B., Chemical Reactor Analysis and Design, 2nd
ed. John Wiley & Sons, Inc., 1990.
摘要在大型船用二冲程柴油发动机在燃烧含硫燃料,主要是硫氧化二氧化硫,虽然三氧化硫和硫酸的大量形成。如果不中和润滑油添加剂,在这些后者的物种,在气缸套的磨损可能造成溶蚀。潜在的攻击是由于缸套润滑油膜或润滑油膜与水溶解反应的酸性物质的来源可能是氧化的硫物种直接溶解为硫酸凝结。为了评价和预测溶蚀衬垫材料的磨损,这是有现实的估计分布/氧化的硫物种的浓度,以及一个可靠的模型的酸性物质中的油膜形成,运输和销毁的关键。本文地址调用了详细的反应机制,以模拟燃料中硫的氧化成SO3和H2SO4和预测二氧化硫的浓度以及转换部分,前半部分的反应机理被耦合入燃烧区的空气夹带占燃烧,加工准备的真实模型。模拟的结果进行评估与以前应用的模型,以及现有数据转换部分的SO2 SO3和H2SO4。转换部分发现是在2.6-6.7%的范围内。源'自^751;文,论`文'网]www.751com.cn