摘要超级电容器由于具有比普通电池更高的功率密度,更快的充放电速率和更长的循环寿命,同时具有比电容器更高的能量密度,使其极具潜力成为新一代储能元件,其技术核心在于电极的制备。二氧化锰理论上具有较高的比容量且资源丰富,但作为电极材料,其低电导率会影响整体的电化学性能。67480
为解决这一问题,一种有效的方法是将MnO2与导电性好的材料形成多层次结构,常选用碳材料或金属氧化物。然而金属氧化物的导电性无法跟纯金属相比。为了获得更好的电化学性能,本实验中我们选择将Co3O4还原成单质Co,进而合成以Co@Pt@MnO2为主要成分的纳米复合体系,使电极材料获得更好的电化学性能。
本文先利用水热法在Ti基片上合成Co3O4纳米线阵列,然后将样品中的Co3O4还原成单质Co,接着用溶液法生长MnO2,使MnO2沉积在其上。作为对照,选取单纯的MnO2材料。结果表明,相对于单纯的MnO2材料,Co@ @Pt@MnO2体系有着更高的比容量、更好的循环稳定性以及更小的扩散阻抗。
毕业论文关键词 超级电容器 氧化锰 纳米复合结构 电化学性能
毕业设计说明书(论文)外文摘要
Title Co@Pt@MnO2 Hierarchical Architectured Nanowire Arrays for High-Performance Supercapacitor Electrodes
Abstract
The Supercapacitor has higher power density, faster charge and discharge rate and longer cycle life than battery, also has higher energy density than capacitor, so it has great potential to become a new generation of energy storage device, and electrode material is a key parameter for supercapacitor. Manganese dioxide has become attractive, since it has a high capacity in theory and is rich in resources, however, its electrochemical performance was affected by its low conductivity.
To solve this problem, one promising way is to combine MnO2 with highly conductive materials to form hierarchical architecture, usually carbon material or metal oxides. However, the conductivity of metal oxides can not compare with metal. In this experiment, we choose to reduce Co3O4 to Co, then synthesis nano composite of Co@ @Pt@MnO2, which displays a better electrochemical characteristics.
Firstly, we use hydrothermal methods to synthetize Co3O4 on Ti substrates. Secondly, Co3O4 is reduced to Co by N2/H2. Then, a thin film of platinum was deposited on the substrate using a sputter. Finally, MnO2 thin layers were deposited onto the surface of Co@Pt nanowire arrays via a facile chemical bath deposition method. By contrast, we choose the pure MnO2 materials for comparision. The results show that the Co@Pt@MnO2 system has a better electrochemical performance than pure MnO2.
Keywords Supercapacitor Manganese oxide Nano¬¬-composite structure Electrochemical properties
目 次
1 绪论 6
1.1 课题研究背景及意义 6
1.2 超级电容器分类及原理 7
1.3 超级电容器电极材料 9
1.4 氧化锰复合材料超级电容器研究近况 14
2 实验仪器、研究方法及原理 16
2.1 主要原料及实验设备 16
2.2 电化学测试方法 17
2.3 微观结构测试方法 21
3 超级电容器钴/氧化锰复合体系电极材料的研究 22
3.1 实验部分