摘要采用极限氧指数仪和锥形量热仪研究了PX230及其与纳米SiO2或氧化镁、聚磷酸铵(APP)复合阻燃剂对聚对苯二甲酸丁二醇酯(PBT)的阻燃作用。结果表明,PX230可使PBT的极限氧指数(LOI)提高,在PBT中添加10%PX230可使PBT的LOI从22.1%提高到25.0%。PX230提高了PBT的阻燃性能,但阻燃效果不显著。将PX230与纳米SiO2或氧化镁、APP进行复配,PBT的LOI没有得到进一步的提高,表明PX230与纳米SiO2或氧化镁、APP没有明显的阻燃协效作用。PX230使PBT热降解速率降低,在热降解过程中促进成炭,提高了PBT的热稳定性。锥形量热仪测试结果表明,加入阻燃剂可以增加PBT的点燃时间,增大火灾性能指数(FPI),从而提高材料的阻燃性能。利用万能试验机和冲击试验机测定样条的力学性能,结果表明加入PX230或者复配阻燃剂的PBT拉伸强度和弯曲强度都有所下降,冲击强度下降较多。表明阻燃剂的加入会降低PBT的力学性能。61364
Abstract The synergistic flame retardancy of PX230, nano-silica(SiO2), nano MgO and ammonium polyphosphate(APP) in PBT was analyzed by using limiting oxygen index apparatus and cone calorimeter. The results show that PX230 can improve the limiting oxygen index(LOI) of PBT, the addition of PX230(10%) can improve the LOI of PBT from 22.1% to 25.0%. PX230 improve the flame retardation of PBT, but the promotion of efficiency is not prominent. When compounding PX230 with nano-silica, MgO and APP, the LOI of PBT has not further improved which shows these three kinds of compounding material cannot obvious synergistic fire retardation. But PX230 will reduce the rate of thermal degradation, accelerate the char formation during thermal degradation and improve the thermal stability of PBT. The results of cone calorimeter show that the addition of fire retardant will extend the time to ignition, increase the FPI and then improve the flame retardation of material. We have measured the mechanical property of blends by using universal testing machine and impact testing machine. It turned out that the addition of PX230 or compounded fire retardant can reduce the tensile and bending strength of PBT,especially the impact strength. Consequently, flame retardant will have a negative effect on the mechanical properties of PBT.
毕业论文关键词:;聚对苯二甲酸丁二醇酯;磷酸酯; 阻燃性能; 热分解; 力学性能
Keyword: PBT;phosphate;flame retardancy;thermal decomposition;mechanical property
目录
1.引言 1
2.实验 3
2.1实验原料 3
2.2实验仪器 3
2.3试样制备 3
2.4性能测试 3
3.结果与讨论 4
3.1阻燃性能研究 4
3.1.1极限氧指数分析 4
3.1.2锥形量热仪分析 5
3.2热失重分析 10
3.3结晶性能的研究 12
3.4力学性能的研究 14
4.结论 15
参考文献 16
致谢 17
1.引言
自20世纪30年代以来,几十年间高分子材料已在各个领域广泛应用,人类在不断感受到有机高分子材料所提供的便利的同时,因其自身存在的易燃性也一直受其带来的潜在火灾风险困扰[1]。比如聚对苯二甲酸丁二醇酯(PBT)是一种应用非常广泛的工程塑料,主要用于汽车、机械设备、电子等领域。因为PBT拥有强度高、耐疲劳、耐热老化、耐溶剂、绝缘性能优良等特性[2]。但是PBT自身易燃,而且燃烧时产生连续滴落现象,容易使火焰蔓延而导致火灾的发生。所以要对PBT进行有效的阻燃改性[3,4]。为了降低火灾的发生率,减少火灾的损失,世界各国都在研究阻燃技术及阻燃材料。