摘要阵列信号处理在雷达、声纳、通信领域有着广泛的应用。传统的ESPRIT算法需要大量的阵元偶才能得到有效的实验数据,这使得在较小的空间难以实现ESPRIT算法。本文研究的是一种基于双L型阵列扩展孔的ESPRIT算法解决该问题。算法首先双L型阵平行于x轴的子阵采用ESPRIT法,计算出低精度但不模糊的x轴方向余弦估计和高精度但模糊的y轴方向余弦估计,同样由平行于y轴的子阵计算出的低精度但不模糊的y轴方向余弦和高精度但模糊的x轴方向余弦估计:最后将低精度但不模糊的方向余弦估计作为标准来解由于扩展孔径带来的模糊问题,并得到最终的波达方向估计值。本文研究的算法无需二维搜索,是一种低运算量高精度的算法。并通过MATLAB仿真实验表明本文研究的算法具有良好的测角性。62962
关键词 阵列信号 双L阵列 ESPRIT算法 解模糊 MATLAB
毕业设计说明书(论文网)外文摘要
Title Angle of arrival estimation algorithm target based on spare lineup
Abstract Array signal processing in radar sonar the field of communication has a wide range of applications. Traditional ESPRIT algorithm requires a lot of array element can be effectively even experimental data, which makes difficult to achieve in a smaller space ESPRIT algorithm. This study is based on double L-shaped array expansion holes ESPRIT algorithm to solve the problem. Firstly, double L-shaped parallel to the x-axis array of sub-array using the ESPRIT method, to calculate the low-accuracy but not the x-axis direction cosine fuzzy estimation and high accuracy, but not the x-axis direction cosine fuzzy estimation and high accuracy, but the y-axis direction cosine vague estimate by the same sub-parallel to the y-axis the calculated array of low resolution but does not obscure the y-axis direction cosine and precision, but the x-axis direction cosine vague as the direction cosines of standard solution due to the expansion aperture blur caused problems and get the final DOA estimates. In this paper, the algorithm does not require two-dimensional search, is a low-precision computation algorithms. Simulation results show that by MATLAB this study goniometer algorithm has good performance.
Keywords Array signal; Double L shaped; ESPRIT algorithm;Solution fuzzy algorithm;MATLAB.
目 次
1 绪论 1
1.1 选题背景和意义 1
1.3 本文内容安排 3
2 DOA基本算法介绍及传统的二维DOA算法介绍 4
2.1 DOA的基本算法 4
2.2 传统的二维DOA算法 8
3 基于ESPRIT算法的二维DOA算法 11
3.1 基于传统的双L阵列流型 11
3.2 基于改进的双L阵列流型 11
3.3 信号模型 12
3.4 基于ESPRIT的二维DOA扩展孔径算法 14
4 多值问题的产生和解模糊方法 19
4.1 常用解角度模糊的方法 19
4.2 基于二维ESPRIT算法的解模糊方法 20
5 仿真及其结果 22