摘要随着经济的发展社会的进步,人们越发重视新能源的开发与环境的保护。TiO2因其活性强且稳定性高等优点被认为是环保领域最具开发前途的环保型光催化材料。然而,TiO2最重大的缺陷就是它高达3.2eV的能带间隙,而CdS的能带窄且其导带能级高于TiO2,因此用CdS修饰TiO2是提高TiO2在可见光范围的光催化性能常用且有效的方法。63922
本论文采用溶胶-水热法通过不同负载方法(CdS/TiO2,TiO2/CdS)以及改变两者的质量配比来制备CdS-TiO2异质结半导体纳米晶复合光催化剂,并通过XRD、TEM、XPS、UV-Vis等手段研究反应条件对产物结构、形貌及光催化活性的影响。制备的复合材料的光催化活性通过在可见光及模拟太阳光下对罗丹明B的降解效果来衡量,结果表明制得的CdS/TiO2 系列样品中60wt%CdS/TiO2可见光催化活性最高,TiO2/CdS系列样品中50wt%CdS/TiO2可见光催化性能最好,可以初步判断最佳质量配比TiO2:CdS 为10:5~10:6。
毕业论文关键词:二氧化钛 CdS 负载 可见光催化活性
毕业设计说明书(论文)外文摘要
Title Synthesis of the CdS-TiO2 heterojunction semiconductor and Reaserch on its photocatalytic performance
Abstract With the social environmental protection consciousness enhancement, the development of new energy and environmental protection receiving great attention among the world. TiO2 is a promising environmental catalysts for its spectacular optical activity and high stability.However,the most significant defect of TiO2 is its band gap ,which reach up to 3.2eV.While the band gap of CdS is narrow and its level of the conduction band is higher than TiO2 .It’s normal that promote the photoelectric performance in the visible range by modify TiO2 with CdS.
In this paper , the composite photocatalysts based on the CdS-TiO2 heterojunction semiconductor nanocrystals were prepared by sol-gel hydrothermal method .The effects on the structure,the morphology and photocatalytic activity by the reaction condition via change method of load and the ratio of TiO2 and CdS .The photocatalytic activity of the composite photocatalysts was measured by the degradation extent for the Rhodamine B in the visible range and simulated sunlight.The result showed that the composite photocatalysts have highe photocatalytic activity.
Keywords: TiO2 CdS Load Visible light photocatalytic activity;
1 绪论 1
1.1 背景介绍 1
1.2 半导体光催化剂 2
1.2.1 半导体光催化剂 2
1.2.2 半导体光催化剂的催化机理 2
1.2.3 TiO2半导体光催化剂简介 2
1.2.4 CdS半导体光催化剂简介 4
1.3 复合半导体光催化剂 4
1.3.1 复合半导体的概念及意义 4
1.3.2 CdS-TiO2复合半导体 5
1.3.3 CdS-TiO2复合半导体光催化机理 6
1.3.4 CdS-TiO2复合半导体的合成方法 6
1.3.4.1 溶胶混合法 6
1.3.4.2 原位合成法 7
1.3.4.3 反胶束法 7
1.3.4.4 化学沉积法 8
1.3.4.5 超声辅助连续化学浴沉积法 8