摘要通过在三个上流式厌氧污泥床(UASB)反应器中添加镁离子,探究不同的镁离子添加策略对反硝化的启动运行和反硝化颗粒污泥形成的作用。反应器R1和R2分别连续和间歇性添加50 mg L-1镁离子,反应器R0作为对照组,不添加镁离子。结果表明,总氮负荷(NLR)和有机负荷(OLR)逐渐提高到极值(分别为36.0 kg N m-3 d-1和216.0 kg COD m-3 d-1)。R1反应器首先出现颗粒污泥,但是各个反应器的性能相似。反应器R0、R1和R2忍受饥饿之后,性能是不同的。试验的后期,R0、R1和R2颗粒的平均粒径分别为1.67,1.72和1.68 mm,R1和R2中颗粒的沉降速率是R0的1.14倍,且添加镁离子的反应器污泥的反硝化活性优于没有添加的。经研究,间歇性添加Mg2+策略是最好的培养反硝化颗粒的方案,符合动力学分析。61285
Abstract In the present work, the effect of Mg2+ supplementation on the start-up of a denitrification process and the granulation of denitrifying sludge was investigated in three upflow anaerobic sludge blanket (UASB) reactors. The reactors R1 and R2 were continuously and intermittently, respectively, supplied with 50 mg L-1 Mg2+,whereas R0 was used as the control. The nitrogen loading rate (NLR) and organic loadingrate (OLR) gradually increased, and extremely high values were obtained (36.0 kgN m-3 d-1 and 216.0 kg COD m-3 d-1, respectively). Granulation occurred in R1 first, but the reactor capacities were comparable. Suffering from starvation, the R0-R2 performan –ces were comparable. At the end of the experiment, the average diameter of the granules in R0、R1, and R2 were 1.67, 1.72 and 1.68 mm, respectively, and the settling velocities of the granules in R1 and R2 were 1.14-fold the speed of R0. The specific denitrifying activity (SDA) of the sludge from the reactors supplied with Mg2+was greater than the reactor without Mg2+. Intermittent Mg2+supplementation was identified as the best choice to be utilized to cultivate denitrifying granules, which was consistent with kinetic analysis.
毕业论文关键词:反硝化;颗粒化;镁;动力学;金属成分
Keywords:Denitrification;Granulation;Magnesium; Kinetic ;Mineral content
目 录
1 引言..4
2 材料和方法.4
2.1 试验装置和操作4
2.2 接种污泥和模拟废水..5
2.3 分析方法5
2.4反硝化活性(SDA)批次试验..6
2.5测定沉降速度(VS).6
2.6动力学分析.6
3 结果与讨论 6
3.1 性能6
3.2 化学计量比..7
3.3 氨氮和亚硝酸盐的积累..10
3.4 污泥颗粒化..10
3.5污泥特性13
3.5.1颗粒的沉降性..13
3.5.2胞外聚合物(EPS)..13
3.5.3 反硝化活性.14
3.5.4 基质降解动力学..14
3.5.5 金属含量.16
4 总结..17
参考文献.17
致谢20
1. 引言
随着社会进步和经济快速发展,水资源严重短缺,水污染已经成为全球性问题之一。富含氮和碳化合物是引起一系列环境问题的主要污染物[1,2]。对污水进行适当处理并进行再利用可以有效缓解水资源短缺压力。生物脱氮因高效节能得到了广泛的关注和应用,其中培育出活性高的优质菌群是工艺成功运行的关键。20世纪70年代,荷兰Lettinga开发了上流式厌氧污泥床(UASB)工艺,并成功培养出了颗粒污泥。颗粒污泥具有良好的沉降性能,能有效地将微生物保留在反应器内,使得这一开发给生物厌氧技术带来了突破性的进展,并逐步应用于废水脱氮技术。