tion(Table1).AllPVDhardcoatingsofthegroupA,B,Dweredepositedbycathodicvacuumarcevaporation,groupC by a hybrid process of vacuum arc evaporation andmagnetron sputtering [16]. Group A summarizes mono-layer coatings with different compositions of AlTiN withanincreasingamountofaluminumfromAlTiN1toAlTiN3 (Al Ti N, Al Ti N, Al Ti N). Group B containsmonolayerAl Cr N-coatingswhichdifferintheirresid-33ual stress state. The coating with compressive residualstress is termed as ‘‘AlCrN C’’ and these with tensileresidual stress as ‘‘AlCrN T’’. AlTiVXN is a dual layerwithahybridAlTiVN/AlTiN-coatingandatoplayerVXN(thickness 1lm). The TiAlSiXN-coatings in group Dexhibit different layer architectures, a dual layer withtoplayerTiSiXN(thickness2.2lm)andamultilayerwith10 alternating TiSiN–AlTiN layers. Group E contains aCVD coating with a ceramic toplayer Al O
(thickness2lm)andTiCN/TiNinterlayers(thicknessTiCN3.5lm,thicknessTiN7.6lm).Coatingthicknesswasmeasuredbycalottegrinding.Thedeterminedhardnessofeachcoatingistheaverageoffivemeasurementswith2000lNusingaBerkovich indenter with 80nm tip-radius, 5s forceincreaseanddecreasetimeandadwelltimeof3s.DepthresolvedscatteringvectorresidualstressmeasurementsofthecoatingshavebeenperformedonaGEX-raydiffrac-tometertypeSeiffertXRD3003etaequippedwithCoKaradiation(30kV,40mA)anda2mmdiametercollimator. Prod.Eng.Res.Devel.(2016)10:147–155149Table3 Cuttingparametersreflection coneSB42CrMo4Ti–6Al–4VPBCuttingspeedv (m/min)c20060Feedf(mm)0.21.00.11.0Depthofcuta (mm)pchemicalreactionsareresponsibleforrapidlyprogressingflankwear[21].180°-2The experiments were conducted with tools CNMG120412MSandsubstrateK313.Rakeandclearanceanglewere set to 5°. The cutting parameters were adjustedaccordingtoTable3.reflectingnet planeshklWear measurements were carried out using a digitalmicroscope (Keyence VHX600). Detailed wear analysesfor selected tools are carried out by SEM. The criteria oftoollifeareaflankwearlandofVB=200lm,toolfailuredue to crater wear or a tool life of t =10min forc42CrMo4andt =20minforTi–6Al–4V.Processforcescwere measured using a three component dynamometerKistlerType9121.Bre/37253 ©IFWP , P , P3specimen coordinate system12PBprimary beam3 ResidualstressstateofthecoatingsSB2secondary beamBragg angleThescatteringvectormethodisbasedoncalculatedstres-gNhklscattering vectorsesofthelatticeplaned (hkl)forthestrain-freedirection.0WithacontinuousreductionofX-raypenetrationdepthina geometrical way to the point of zero, depth resolvedinformation of residual stresses in thin films can be pro-vided. For measurements applying the scattering vectormethod,aspecial5-axesdiffractometerisrequired,whichallows a rotation of the specimen in reflection positionaround the scattering vector g/w. Hereby, the anglebetweentheprimarybeam(PB)andthespecimensurfaceis varied, which influences the X-ray penetration depthnormal of netplanehkltilting anglerotation angle by sample normalrotation angle by scattering vectorFig.1 Scatteringvectormethod[5]is (hkl)=(200) and group E (hkl)=(300). A change inthe ratio of Al and Ti in group A leads to no significantalteration of the residual stress depth distribution. With adifferent process pressure and BIAS voltage the residualstressesshiftfromcompressivetotensilestressesingroupB. Depth resolved residual stress measurement of a mul-tilayer PVD-coating with the scattering vector method isshown in group D (TiAlSiXN multilayer). The peak(hkl)=(200) of the TiSiN layer and the AlTiN layersuperimposes. Thus, the selected peak for stress determi-(Fig.1)[15].Withthediffractionelasticconstantss (hkl)1and‘s (hkl)andtheinterpolatedlatticeplaned Laplace2þwstresseswiththedepthinformationsparalleltothesurfacearedeterminedto[15,22]12FIIðhkl;sÞ¼ = s ðhklÞsin wþ2s ðhklÞð1Þð2Þ222r ðsÞ¼½dþðhkl;sÞÀd ðhklÞ=½d ðhklÞF ðhkl;sÞIIw00IIThecompositionofcoatingslimitsthemaximumX-raynationsofthealternatingTiSiN–AlTiNlayersispenetrationdepth.Duetotheabsorptioncoefficientsofthecoating composition the penetration depth is smaller thanthecoatingsthickness.(hkl)=(200). The result without significant offsetsbetween the measured points proves the possibility tomeasure overall residual stresses in multilayer coatingswiththescatteringvectormethod.Theresidualstressdepthdistributionsofthecoatingsarepresented in Fig.2 for the coating groups A–E. TheselectedpeakforstressdeterminationsofthegroupsA–DDepth resolved residual stresses of coatings and thestress state near surface and near substrate enable a123 150Prod.Eng.Res.Devel.(2016)10:147–155group Adistance from surface2group Bcrater wearflank wearrake facedistance from surfacerake face3000 01µm4012µm4MPa10000AlTiN 3AlCrN TAlTiN 1flank face200 µmflank face200 µm-1000-2000-3000-4000-5000-6000-7000chippingAlTiN 2rake facerake faceadhesionAlCrN Cnear-surfacenear-substrateflank faceflank face200 µm200 µmgroup C, Dgroup Edistance from surface1 2 4Ri/79927 ©IFWdistance from surface3000 012µm40µmFig.3 WearformsMPa10000Residualstressinthecoatinginteractswithcompositionandhardnessofthecoating.Usingamodifiedcompositionwillchangethesetwoparametersbecauseofchangedlat-ticeconstantsandadistortedlattice.Variedparametersinthecoatingprocess,forexampleBIASvoltageorprocesspressurewithconstantcompositionofthecoating,changethe depth distribution of coatings residual stresses fromsurface to substrate. Because of these interactions, theperformanceof coatingsin cutting experiments cannot beascribedtoonefactor.Instead,thecombinationofresidualstress, composition and hardness of coatings determinetheir performance in machining. A direct correlation
- 上一篇:YZ12振动压路机英文文献和中文翻译
- 下一篇:动态特征测量系统英文文献和中文翻译
-
-
-
-
-
-
-
大众媒体对公共政策制定的影响
java+mysql车辆管理系统的设计+源代码
杂拟谷盗体内共生菌沃尔...
电站锅炉暖风器设计任务书
酸性水汽提装置总汽提塔设计+CAD图纸
河岸冲刷和泥沙淤积的监测国内外研究现状
当代大学生慈善意识研究+文献综述
十二层带中心支撑钢结构...
中考体育项目与体育教学合理结合的研究
乳业同业并购式全产业链...