Further, the actualcapacities of the structure may be inadequate in the face of real seismic demands. Althoughtwo records are never enough to make such generalization, it should be borne in mind thatthe latest revision of the code was released not long after these two earthquakes. Further, it isalso true that only a full probabilistic analysis can determinewhether these structures actuallyexceed the limiting collapse prevention probability, e.g., 2% in 50 years (SAC-FEMA 2000).Nevertheless, this study does underscore that a comprehensive investigation is in order andthat there is scope for rationalization in the IS codal provisions.Acknowledgments This work was produced as part of the undergraduate curriculum at IIT Kharagpur ofthe first author. The comments from Professor Dimitrios Vamvatsikos of University of Cyprus during thepreparation of this manuscript are gratefully acknowledged.ReferencesAu FTK, Yan ZH (2008) Dynamic analysis of frames with material and geometric nonlinearities based on thesemirigid technique. Int J Struct Stab Dyn 8(3):415–438BIS (2002) IS1893:2002 Part 1 criteria for earthquake resistant design of structures part 1: general provisionsand buildings 5th revision. Bureau of Indian Standards, New DelhiBIS (2007) IS800:2007General construction in steel code of practice 3rd revision.Bureau of Indian Standards,New DelhiChopra AK, Goel RK (2001) Amodal pushover analysis procedure to estimate seismic demands for buildings:theory and preliminary evaluation. PEER Report, UC Berkeley 2001/03Chopra AK (2002) Dynamics of structures–theory and applications to earthquake. Prentice Hall, EnglewoodCliffsCornell CA, Jalayer F, Hamburger RO, Foutch D (2002) Probabilistic basis for 2000 SAC Federal EmergencyManagement Agency steel moment frame guidelines. J Struct Eng 128(4):526–533Hasan R, Xu l, Grierson DE (2002) Pushover-analysis for performance based design. Comput Struct 80:2483–2493Jain SK, Nigam NC (2000) Historical developments and current status of earthquake engineering in India. In:Proceedings of the 12th world conference on earthquake engineering. Auckland, New ZealandJain SK,Murthy CVR (2005) Proposed draft provisions and commentary on Indian seismic code 1983 Part 1,Report IITK-GSDMA-EQ05-V4.0, available at www.nicee.org/iitk/gsdma_codes.php. Accessed April26 2010Marino EM, Nakashima M, Mosalam KM (2005) Comparison of European and Japanese seismic design ofsteel building structures. Eng Struct 27:827–840SAC-FEMA (2000) Federal EmergencyManagement Agency -FEMA, Recommended seismic design criteriafor new steel moment-frame buildings. Rep. No. FEMA-350, SAC Joint VentureShekhar NC, Sunil Babu KBS, Ramancharla PK (2004) Equivalent static analysis as per IS 1893:2002- Asimple software tool. www.iiit.net/techreports/2006_7.pdfValles RE, Reinhorn AM, Kunnath SK, Li C, Madan A (1996) IDARC 2d Version 4.0 A program for theinelastic damage analysis of buildings. technical report nceer-96-0010, 1996Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis. Earthq Eng Struct Dyn 31(3):491–514Yun SY, Hamburger RO, Cornell CA, Foutch D (2002) Seismic performance evaluation for steel momentframes. J Struct Eng 128(4):534–545
通过增量动态分析评估设计低层钢框架的IS 代码的规定
摘要:目前印度标准(IS)代码的结构抗震设计(IS1893:2002)指定的时间历程分析的结构高度大于40m。但是,对于结构小于40m的建筑建议采用等效的静态分析概念。本研究试图探讨当它涉及到低于40m的结构遭受地震加载指定的代码的静态分析,而不是使用动态分析,来实际评价目前的设计强度是否充足。增量动力分析,其主体结构为一个递增系列强度措施,出于此目标而采用了它。三种二维抗弯钢结构在1991乌德尔格希和2001普杰地震(这两个早于目前IS1893)已被研究,包括一个单一的多层门户框架、一个2层3跨框架和3层2跨框架。然而可以说,两个记录是远远不够总结任何结论的,只有一个完整的概率分析才可确定是否限制防坍塌的概率已经超过了这些结构,在两个代码的情况下才会显着预测出结构的抗震要求。与此同时,这也许就是为什么通常的规范规定,结构能力,在大多数情况下低估。这些建议是为了深入研究,并且IS codal的规定中有一些合理化的范围。
- 上一篇:加强钢框架连接和有限元分析英文文献和中文翻译
- 下一篇:钢筋混凝土柱在火灾中的性能模拟英文文献和中文翻译
-
-
-
-
-
-
-
十二层带中心支撑钢结构...
河岸冲刷和泥沙淤积的监测国内外研究现状
当代大学生慈善意识研究+文献综述
酸性水汽提装置总汽提塔设计+CAD图纸
中考体育项目与体育教学合理结合的研究
电站锅炉暖风器设计任务书
杂拟谷盗体内共生菌沃尔...
大众媒体对公共政策制定的影响
乳业同业并购式全产业链...
java+mysql车辆管理系统的设计+源代码