菜单
  



    Table 2
    Material properties for mould and product
    Carbon Steel (AISI 1050), mould    ABS Polymer, product
    Density, ρ    7860 kg/m3    Density, ρ    1050 kg/m3
    Young’s modulus, E    208 GPa    Young’s modulus, E    2.519 GPa
    Poisson’s ratio, ν    0.297    Poisson’s ratio, ν    0.4
    Yield strength, SY    365.4 MPa    Yield strength, SY    65 MPa
    Tensile strength, SUTS    636 MPa    Thermal expansion, α    65 × 10−6 K−1
    Thermal expansion, α    11.65 × 10−6 K−1    Conductivity, k    0.135 W/(m K)
    Conductivity, k    49.4 W/(m K)    Specific heat, c    1250 J/(kg K)
    Specific heat, c    477 J/(kg K)
    S.H. Tang et al. / Journal of Materials Processing Technology 171 (2006) 259–267    263

    the products. Fig. 8 shows nodes selected for plotting time
    response graphs.
    Figs. 9–17 show temperature distribution curves for dif-
    ferent nodes as indicated in Fig. 8.
    From   the   temperature   distribution   graphs   plotted   in
    Figs. 9–17, it is clear that every node selected for the graph
    plotted experiencing increased in temperature, i.e. from the
    ambient  temperature  to  a  certain  temperature  higher  than
    the ambient temperature and then remained constant at this
    temperature for a certain period of time. This increase in tem-
     
    Fig. 6. Loaded model for analysis of product.

    contour plots of thermal or heat distribution at different time
    intervals in one complete cycle of plastic injection molding.
    For the 2D analysis of the mould, time response graphs
    are plotted to analyze the effect of thermal residual stress on
     
    perature was caused by the injection of molten plastic into
    the cavity of the product.
    After  a  certain  period  of  time,  the  temperature  is  then
    further  increased  to  achieve  the  highest  temperature  and
    remained  constant  at  that  temperature.  Increase  in  temper-
    ature was due to packing stages that involved high pressure,
    Fig. 7. Contour plots of heat distribution at different time intervals.
    264    S.H. Tang et al. / Journal of Materials Processing Technology 171 (2006) 259–267
    Fig. 11. Temperature distribution graph for Node 302.
    Fig. 8. Selected nodals near product region for time response graph plots.

    Fig. 12. Temperature distribution graph for Node 290.

    which caused the temperature to increase. This temperature
    remains constant until the cooling stage starts, which causes
    reduction in mould temperature to a lower value and remains
    at this value. The graphs plotted were not smooth due to the
    absence  of  function  of  inputting  filling  rate  of  the  molten
     
    Fig. 9. Temperature distribution graph for Node 284.
    Fig. 10. Temperature distribution graph for Node 213.
     
    plastic as well as the cooling rate of the coolant. The graphs
    plotted only show maximum value of temperature that can
    be achieved in the cycle.
    The most critical stage in the thermal residual stress anal-
    ysis is during the cooling stage. This is because the cooling
    Fig. 13. Temperature distribution graph for Node 278.
  1. 上一篇:塑料注塑模具并行设计英文文献和翻译
  2. 下一篇:注塑模具钢研磨和抛光工序英文文献和翻译
  1. 汽车乘员舱的声振耦合英文文献和中文翻译

  2. 立体光照成型的注塑模具...

  3. 低频振动的铁路车轴的状...

  4. 接头的形状对沥青塞接头...

  5. 电-气动驱动的垂直计算机...

  6. 开口端纺纱系统中的锥形...

  7. CAD/CAM模具技术课程教学改...

  8. 中考体育项目与体育教学合理结合的研究

  9. 电站锅炉暖风器设计任务书

  10. 杂拟谷盗体内共生菌沃尔...

  11. 酸性水汽提装置总汽提塔设计+CAD图纸

  12. java+mysql车辆管理系统的设计+源代码

  13. 乳业同业并购式全产业链...

  14. 大众媒体对公共政策制定的影响

  15. 十二层带中心支撑钢结构...

  16. 河岸冲刷和泥沙淤积的监测国内外研究现状

  17. 当代大学生慈善意识研究+文献综述

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回