菜单
  

    localized  corrosion  than  the  300  series
    austenitics. On  the negative side,  these materials
    still  present  some  degree  of  difficulty  in  pro-
    cessing  and  welding;  post  weld  heat  treatment
    may  be  required.  Ferrite  content  must  be
    controlled to avoid  its transformation  to  sigma, a
    hard brittle phase.
    3. 3.  Super austenitic stainless  steels
    These  materials  keep  the  basic  austenitic
    structure  with  higher  contents  of  chrome  and
    molybdenum with nitrogen. Nickel must also be
    increased  to  offset  the  ferrite  forming  effect  of
    Cr and Mo. Drawbacks:  their substantially higher
    cost,  processing  difficulties  and  weldability
    problems.
    3.4.  Specialized alloys
    Alloy  885,  a  patented  material,  is  an  alloy
    developed with a corrosion resistance equal to or
    better than most duplex alloys,  approaching that
    of the super austenitic  stainless steels and,  at the
    same  time,  possessing  the  ease  of  casting  and
    welding of  the 300 series austenitics.
    4. Alloy  885. A  stainless  steel casting alloy  for
    pumps  in seawater applications
    4.1.  Localized corrosion
    There has been a considerable amount of data
    published  regarding  the  metallurgical  variables
    that  affect  the  localized  corrosion  behavior
    (pitting and  crevice corrosion). Chrome, molyb-
    denum and  nitrogen have  a  beneficial  effect on
    the  pitting  and  crevice  corrosion  resistance.
    Researchers  suggest  the  use  of  the  materials
    PREN, Pitting Resistance Equivalent Number, to
    evaluate the corrosion resistance.
    PREN = Cr(%) + 3.3  x Mo(%) +  16 x N(%)
    A  technical  paper  presented  at  the  NACE
    (National  Association  of  Corrosion  Engineers)
    convention in  1988 by T.J. Glover indicates that
    a PREN of 38  is sufficient  to guarantee corrosion
    resistance  of  a  stainless  steel  to  seawater  ex-
    posure.
    Another  parameter  used  for  evaluating  the
    corrosion  resistance  of materials  is  the  Crevice
    Factor.  The  formula  developed  from  actual
    crevice corrosion testing performed  in  the  labo-
    ratory, reads as shown below.
    CF = Cr(%) + 3 × Mo(%) +  15 × N(%)
    Experimental data shows that if an alloy has a
    minimum crevice  factor of 35,  the material will
    not crevice corrode in an aggressive acid chloride
    environment  test.
    The Critical Crevice Temperature (CCT) of a
    material is yet another parameter used to  indicate
    its  corrosion  resistance.  It  is  the  temperature  of
    an  acid  chloride  solution  at  which  corrosion  is
    first  observed.  The  higher  the CCT,  the  greater
    the corrosion resistance the alloy will exhibit.
    4.2.  Stress corrosion
    In addition to ferrite content, temperature and
    oxygen content, the stress corrosion resistance of
    the  austenitic  alloys  is  also  a  function  of  the
  1. 上一篇:企业的社会责任英文文献和中文翻译
  2. 下一篇:填料塔英文献和中文翻译
  1. 高压泵反渗透设备列车英文文献和中文翻译

  2. 十二层带中心支撑钢结构...

  3. 乳业同业并购式全产业链...

  4. 电站锅炉暖风器设计任务书

  5. java+mysql车辆管理系统的设计+源代码

  6. 大众媒体对公共政策制定的影响

  7. 杂拟谷盗体内共生菌沃尔...

  8. 酸性水汽提装置总汽提塔设计+CAD图纸

  9. 当代大学生慈善意识研究+文献综述

  10. 中考体育项目与体育教学合理结合的研究

  11. 河岸冲刷和泥沙淤积的监测国内外研究现状

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回