[21]R.Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293 (2001) 269-271.
[22] S. Mozia, K. Bubacz, M. Janus, A. W. Morawski, Decomposition of 3-chlorophenol on nitrogen modefied Ti02 photocatalysts [J], J. Hazard. Mater.203-204 (2012) 128-126.
[23] Y Wang, C. Feng, Z. Jin, J. Zhang, J. Yang, S. Zhang, A novel N-doped Ti02 with high visible light photocatalytic activity [J], J. Mol. Catal. A: Chem. 260 (2006)1-3.
[24] J. Senthilnathan, L. Philip, Photocatalytic degradation of lindane under UV andvisible light using N-doped Ti02 [J], Chem. Eng. J. 161 (2010) 83-92.
[25]GD.Yang,Z.F.Yan, T.C. Xiao, Low-temperature solvothermal synthesis of visible-light-responsive S-doped Ti02 nanocrystal [J], Appl. Surf. Sci. 258 (2012)4016-4022.
[26] JIN J, YU J G, LIU G, et al. Single crystal CdS nanowires with high visible-light photocatalytic H}-production performance[J]. Journal of Materials Chemistry A, 2013, 1:10927-10934.
[27] WENG B, LIU S Q, ZHANG N, et al. A simple yet efficient visible-light-driven CdS nanowires-carbon nanotube 1 D-1 D nanocomposite photocatalyst[J]. Journal of Catalysis, 2014,
309, 146-155
[28] WANG D F, PIERRE A, KIBRIA M G, et al. Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy[3]. Nano Letters, 2011,11 (6): 2353-2357.
[29] XU F, CHEN J, Guo L Y, et al. In situ electrochemically etching-derived Zn0 nanotube arrays for highly efficient and facilely recyclable photocatalyst[J]. Applied Surface Science, 2012,258(20): 8160-8165.
[30] LIU B, LIU L M, LANG X F, et al. Doping high-surface-area mesoporous TiO} microspheres
with carbonate for visible light hydrogen production[J]. Energy&Environmental Science, 2014,
DOI: 10.1039/C4EE00472H
[31]Zhang, Z., et al., Inducing photocatalysis by visible light beyond the absorption edge: Effect of upconversion agent on the photocatalytic activity of Bi2WO6. Applied Catalysis B: Environmental, 2010. 101(1-2): p. 68-73.