摘要本文主要研究的是基于多层LTCC工艺的微带线到微带线的探针过渡。首先研究了一种宽带的微带到微带的通孔过渡,通孔四周有四个接地通孔来传导回波电流,这一过渡在80 GHz后性能开始恶化,不能达到3mm波段过渡的要求。接着,通过理论公式以及HFSS软件仿真得到特性阻抗为50Ω的利用LTCC材料制作的微带线以及同轴线的尺寸,通过这一过程学习了如何正确的使用HFSS仿真软件。然后在以上研究的基础上探讨了利用传统同轴线实现微带线层间过渡的性能。通过理论和仿真实验验证得到,由于LTCC介质具有较高的介电常数,使得微带线到微带线的传统同轴探针形式的过渡受到同轴线性质的限制,很难实现3mm波段的过渡。最后设计研究了一种采用缝隙耦合贴片实现微带线到波导的过渡结构,并与单个贴片的过渡做了对比,发现使用两个贴片使整个过渡的带宽变大了。64578
毕业论文关键词 LTCC,微带线, 同轴线,宽带过渡,波导
毕业设计说明书(论文)外文摘要
Title Investigation on 3mm transition based on the LTCC technology
Abstract A microstrip-to-microstrip probe transition based on the multilayer LTCC technology is studied in this paper. First, a broadband microstrip-to-microstrip via transition is designed and analyzed .The through-hole via is surrounded by four grounded vias which are used as the return current paths.The performance of this transition begin to deteriorate from 80 GHz, so it can not be applied in 3 mm waveband. Then using theoretical formula and the HFSS simulation software to get the sizes of microstrip line and coaxial line with the characteristic impedance of 50 Ω. Through this process I learned how to properly use the HFSS simulation software.Then the performances of microstrip-to-microstrip transitions between layers using traditional coaxial line are analyzed. Due to the high dielectric constant of the dielectric material, this transition is difficult to achieve good performace on 3mm because of the restriction of the traditional coaxial line. At last a microstrip-to-waveguide transition using gap-coupled patch is designed and analyzed . Compared with a single patch transition, the gap-coupled patch transition has a wider bandwidth.
Keywords:LTCC, microstrip line, coaxial line, wide-band transition, waveguide.
1 引言…1
1.1 LTCC简介…1
1.2 微带线到微带线的过渡2
1.3 微带线到波导的过渡3
1.4 HFSS软件介绍4
1.5 IE3D软件介绍 …6
2 设计与仿真内容 …6
2.1 微带线到微带线的过渡 6
2.2 基于LTCC的微带线研究 10
2.3 同轴线研究 …14
2.4 微带线到同轴的过渡 19
2.5 波导到微带线的过渡 …22
结论 …26
致谢 …26
参考文献…27
一.引言
1.LTCC简介
低温共烧陶瓷(Low Temperature Co-fired Ceramic, LTCC)技术是于1982年休斯公司开发的新型材料技术, 在此上下文中“共烧陶瓷”的意思是指,陶瓷载体以及所有的导电性的,电阻性和介电材料在窑中是同一时间烧制的。“低温”指的是烧结的温度小于1000摄氏度。低温共烧陶瓷器件包括电容器,电感器,电阻器,变压器和混合电路。低温共烧陶瓷工艺也可用于设计生产集成电路。低温共烧陶瓷器件是由独立处理的多个层组成的,把它们组装到一个设备中是作为最后一个步骤。这不同于半导体器件制造的串行处理处理方法,每一个新的层上都得制作前层的上面。