4.4本章小结 31
5 数字系统三相不平衡度检测设计 32
5.1系统测量原理 32
5.2系统硬件设计 32
5.3系统软件设计 32
5.4电路的设计与实现 34
5.6本章小结 37
结论 38
致谢 39
参考文献 40
1 引言
1.1概述
三相不平衡是指三相电源各相的电压不对称。是各相电源所加的负荷不均衡所致,属于基波负荷配置问题。发生三相不平衡即与用户负荷特性有关,同时与电力系统的规划、负荷分配也有关。《电能质量三相电压允许不平衡度》(GB/T15543-1995)适用于交流额定频率为50赫兹。在电力系统正常运行方式下,由于负序分量而引起的PCC点连接点的电压不平衡。该标准规定:电力系统公共连接点正常运行方式下不平衡度允许值为2%,短时间不得超过4%。
1.2三相不平衡的危害及影响
增加线路的电能损耗。在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。论文网
增加配电变压器的电能损耗。配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。因为配变的功率损耗是随负载的不平衡度而变化的。
配变出力减少。配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本一致,各相额定容量相等。配变的最大允许出力要受到每相额定容量的限制。假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少。其出力减少程度与三相负载的不平衡度有关。三相负载不平衡越大,配变出力减少越多。为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。假如配变在过载工况下运行,即极易引发配变发热,严重时甚至会造成配变烧损。
配变产生零序电流。配变在三相负载不平衡工况下运行,将产生零序电流,该电流将随三相负载不平衡的程度而变化,不平衡度越大,则零序电流也越大。运行中的配变若存在零序电流,则其铁芯中将产生零序磁通。(高压侧没有零序电流)这迫使零序磁通只能以油箱壁及钢构件作为通道通过,而钢构件的导磁率较低,零序电流通过钢构件时,即要产生磁滞和涡流损耗,从而使配变的钢构件局部温度升高发热。配变的绕组绝缘因过热而加快老化,导致设备寿命降低。同时,零序电流的存也会增加配变的损耗。
影响用电设备的安全运行。配变是根据三相负载平衡运行工况设计的,其每相绕组的电阻、漏抗和激磁阻抗基本一致。当配变在三相负载平衡时运行,其三相电流基本相等,配变内部每相压降也基本相同,则配变输出的三相电压也是平衡的。假如配变在三相负载不平衡时运行,其各相输出电流就不相等,其配变内部三相压降就不相等,这必将导致配变输出电压三相不平衡。同时,配变在三相负载不平衡时运行,三相输出电流不一样,而中性线就会有电流通过。因而使中性线产生阻抗压降,从而导致中性点漂移,致使各相相电压发生变化。负载重的一相电压降低,而负载轻的一相电压升高。在电压不平衡状况下供电,即容易造成电压高的一相接带的用户用电设备烧坏,而电压低的一相接带的用户用电设备则可能无法使用。所以三相负载不平衡运行时,将严重危及用电设备的安全运行。