1.5量子效应
量子点独特的性质基于它自身的量子效应,当颗粒尺寸进入纳米量级时,尺寸限域将引起尺寸效应、量子限域效应、宏观量子隧道效应和表面效应,从而派生出纳米体系具有常观体系和微观体系不同的低维物性,展现出许多不同于宏观体材料的物理化学性质,在非线形光学、磁介质、催化、医药及功能材料等方面具有极为广阔的应用前景,同时将对生命科学和信息技术的持续发展以及物质领域的基础研究发生深刻的影响。
表面效应是指随着量子点的粒径减小,大部分原子位于量子点的表面,量子点的比表面积随粒径减小而增大。由于纳米颗粒大的比表面积,表面相原子数的增多,导致了表面原子的配位不足、不饱和键和悬键增多.使这些表面原子具有高的活性,极不稳定,很容易与其它原子结合。这种表面效应将引起纳米粒子大的表面能和高的活性。表面原子的活性不但引起纳米粒子表面原子输运和结构型的变化,同时也引起表面电子自旋构象和电子能谱的变化。表面缺陷导致陷阱电子或空穴,它们反过来会影响量子点的发光性质、引起非线性光学效应。金属体材料通过光反射而呈现出各种特征颜色,由于表面效应和尺寸效应使纳米金属颗粒对光反射系数显著下降,通常低于1%,因而纳米金属颗粒一般呈黑色,粒径越小,颜色越深,即纳米颗粒的光吸收能力越强,呈现出宽频带强吸收谱。
由于量子点与电子的De Broglie波长、相干波长及激子Bohr半径可比拟,电子局限在纳米空间,电子输运受到限制,电子平均自由程很短,电子的局域性和相干性增强,将引起量子限域效应。对于量子点,当粒径与Wannier激子Bohr半径aB相当或更小时,处于强限域区,易形成激子,产生激子吸收带。随着粒径的减小,激子带的吸收系数增加,出现激子强吸收。由于量子限域效应,激子的最低能量向高能方向移动即蓝移。最新的报道表面,日本NEC已成功地制备了量子点阵,在基底上沉积纳米岛状量子点阵列。当用激光照射量子点使之激励时,量子点发出蓝光,表明量子点确实具有关闭电子的功能的量子限域效应。当量子点的粒径大于Waboer激子Bohr半径岭时,处于弱限域区,此时不能形成激子,其光谱是由干带间跃迁的一系列线谱组成。论文网
传统的功能材料和元件,其物理尺寸远大于电子自由程,所观测的是群电子输运行为,具有统计平均结果,所描述的性质主要是宏观物理量.当微电子器件进一步细微化时,必须要考虑量子隧道效应。100nm被认为是微电子技术发展的极限,原因是电子在纳米尺度空间中将有明显的波动性,其量子效应将起主要功能.电子在纳米尺度空间中运动,物理线度与电子自由程相当,载流子的输运过程将有明显电子的波动性,出现量子隧道效应,电子的能级是分立的.利用电子的量子效应制造的量子器件,要实现量子效应,要求在几个μm到几十个μm的微小区域形成纳米导电域。电子被“锁”在纳米导电区域,电子在纳米空间中显现出的波动性产生了量子限域效应。纳米导电区域之间形成薄薄的量子垫垒,当电压很低时,电子被限制在纳米尺度范围运动,升高电压可以使电子越过纳米势垒形成费米电子海,使体系变为导电.电子从一个量子阱穿越量子垫垒进入另一个量子阱就出现了量子隧道效应,这种绝缘到导电的临界效应是纳米有序阵列体系的特点。
通过控制量子点的形状、结构和尺寸,就可以方便地调节其能隙宽度、激子束缚能的大小以及激子的能量蓝移等电子状态。随着量子点尺寸的逐渐减小,量子点的光吸收谱出现蓝移现象。尺寸越小,则谱蓝移现象也越显著,这就是人所共知的量子尺寸效应。