摘要:水体中过多的抗生素在人体中会产生毒副作用,因此目前水体中残留抗生素的去除问题被越来越多的人关注,而中国是世界上滥用抗生素最为严重的国家之一,由此造成的细菌耐药性问题尤为突出。去除抗生素的方法有:生物处理法、氯化法、电化学处理法、吸附膜处理法等等,在这些方法中,吸附法因其去除抗生素残留的高效性开始被大众接受。但是如何选取吸附材料成为了我们需要思考的问题。石墨烯作为一种新型碳材料,具有丰富的孔隙结构、高比表面积、良好的热稳定性及结构可控等独特优点,对于吸附液相中的污染物效果十分明显。本文主要是研究石墨烯基复合材料对环丙沙星的吸附特性研究,并研究各类环境因素对于该材料吸附抗生素的影响。48701
石墨烯基复合材料吸附环丙沙星的动力学实验结果表明其在1~5d吸附效率最快,达到平衡的时间大概在7d左右。对于实验数据的处理分别采用假一级、假二级和颗粒内扩散模型来评价实验所取得的结果,我们发现石墨烯复合材料吸附环丙沙星的动力学和拟、假二级动力学模型比较吻合,吸附速率主要由颗粒内扩散和外部扩散共同控制。
对石墨烯基复合材料吸附等温线研究,拟合模型采用Langmuir 和Freundlich方程,由拟合数据的相关性系数R2表明Langmuir模型比Freundlich模型的拟合效果要好(R2: 0.97325>0.92704),由Langmuir模型所计算出的最大吸附容量qm为363.28 mg/g。通过D-R 方程模型,比较发现吸附平均自由能Ea值均小于8 kJ/mol,这表明石墨烯基复合材料对环丙沙星的主要吸附过程是物理吸附。
总之,石墨烯基复合材料对环丙沙星的吸附过程是一个由快到慢的物理吸附过程,石墨烯基复合材料对环丙沙星的吸附容量随着吸附剂质量增加而减小,离子强度实验表明离子的浓度对吸附的效果也有影响(表现为浓度在一定的范围内促进吸附),pH值对吸附效果的影响表现为在一定的范围内随着pH值的增大吸附效果增强,超过该临界值便抑制吸附,原因可能是离子间相互静电作用。
毕业论文关键词:抗生素,石墨烯基复合材料,吸附,等温线,动力学,离子强度,pH值。
Abstract:Too much antibiotics of the water will produce toxic side effects in the body, so removing the residual antibiotics of the water were concerned by more and more people, and Chinese is the world's most serious abuse of antibiotics, bacterial resistance problem caused by the mostprominent. There are some ways of removal of antibiotics: biological treatment method electrochemical treatment, chlorination, adsorption method, membrane treatment method and so on. In these methods, adsorption is accepted by the majority of people because of its high efficiency removal of antibiotic residues. But how to select the adsorption material as we need to think about it. Graphene is a new carbon material with rich pore structure, high specific surface area the structure, thermal stability and controllable unique advantages such as the adsorption of pollutants in liquid phase, the effect is very obvious. This project mainly studies the graphene composites of ciprofloxacin.The adsorption characteristics of the stars were studied, and the effects of various environmental leaded by the adsorption of antibiotics were studied.
Graphene composite adsorption ciprofloxacin dynamic experimental results show that the adsorption efficiency of 1-5 days in the fastest, reached equilibrium time probably in about 7 days. For the processing of the experimental data were used to pseudo first order, pseudo second-order and intraparticle diffusion model to evaluate the results of the experiment, we found the kinetics of graphene composite adsorption of ciprofloxacin and quasi, the pseudo second order kinetic model is consistent, the adsorption rate is controlled by particle diffusion and external diffusion control.