摘要在经济高速发展的今天,化石能源的大量消耗所造成的能源枯竭和使用这些化石能源所造成的环境污染严重影响着人类的生存与发展。负载金纳米颗粒的类石墨相氮化碳和氮化硼可用于可见光催化和有机催化还原,既能缓解能源危机,又能减轻环境污染。本课题设计、制备了一系列基于Au纳米颗粒的Au/g-C3N4和Au/h-BN纳米复合材料,并研究其在可见光下的光催化性能和对硝基苯酚催化还原性能,并采用多种技术如XRD、FTIR、TEM、UV-vis等对纳米复合材料进行表征。实验结果表明:催化剂具有较好催化活性的主要原因为:Au纳米粒子的较好分散性及Au纳米粒子与g-C3N4的协同效应。42778
关键词 Au纳米颗粒,g-C3N4,h-BN,可见光催化,催化还原
毕业论文设计说明书外文摘要
Title Synthesis and the catalytic performance of based on Au nanocomposite materials.
Abstract
With the rapid development of economic, fossil energy consumption caused by large amounts of energy depletion and environmental pollution caused by using fossil energy affects the survival and development of human beings seriously. Gold nanoparticles were homogeneously anchored on the surface of graphitic carbon nitride or hexagonal boron nitride can be used in visible light catalysis and organic catalytic reduction, which can not only alleviate energy crisis but also reduce environmental pollution. In this dissertation, Au/g-C3N4 and Ag/h-BN nanocomposites with differing Au content have been respectively prepared via a simple in-situ growth method. Au/g-C3N4 and Ag/h-BN nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and Uv-vis absorption spectroscopy (UV-vis). The photocatalytic activities of the Au/g-C3N4 nanocomposites and the organic catalytic performance of the Au/h-BN nanocomposites were evaluated. The results show that these catalysts reveal excellent catalytic activity, which can be attributed to the high dispersion of Au nanoparticles and the significant synergistic effect between Au nanoparticles and g-C3N4 or h-BN.
Keyword Au nanoparticles,g-C3N4,h-BN,visible-light photocatalysis,catalytic reduction
目 次 V
1 绪论 1
1.1 引言 1
1.2 Au纳米粒子的简介 1
1.3 载体纳米材料简介 2
1.3.1 石墨相氮化碳纳米材料简介 2
1.3.2 氮化硼纳米材料简介 3
1.4 基于金纳米粒子复合材料的催化性能研究 4
1.5 本课题的研究内容和研究意义 5
2 Au/g-C3N4纳米复合材料的制备及光催化性能研究 6
2.1 引言 6
2.2 实验部分 7
2.2.1 实验试剂 7
2.2.2 实验仪器 7
2.2.3 Au/g-C3N4纳米复合材料的制备 7
2.2.4 Au/g-C3N4纳米复合材料的表征 8
2.2.5 可见光催化活性测试 8
2.3 结果与讨论 9
2.3.1 催化剂的结构与形貌 9
2.3.2 催化剂的吸附性能研究