摘要:本文利用滴涂的方法构建了石墨烯修饰玻碳电极(GR/GCE)并用作电化学传感器,研究了特丁基对苯二酚(TBHQ)在修饰电极上的电化学行为。我们先用场发射扫描电镜(FE-SEM)对石墨烯修饰玻碳电极的表面形貌进行表征,再分别用裸玻碳电极和石墨烯修饰电极在铁氰化钾溶液中进行循环伏安扫描。该实验结果表明,石墨烯可均匀分散在玻碳电极上,且修饰后的电极在电化学检测中比裸玻碳电极具有更好的电化学特性。然后我们又证明了石墨烯修饰电极对抗氧化剂TBHQ有明显的催化作用,与裸玻碳电极相比,峰电流提高了6.3倍。实验过程中考察了pH的改变对TBHQ氧化的影响。结果表明,当pH = 3.0时,TBHQ呈现出最高灵敏度,在优化实验条件下,TBHQ的线性范围为1.2 × 10-6~1.5 × 10-4 mol/L,检出限为4.0 × 10-7 mol/L。修饰电极表现出良好的稳定性。34657
毕业论文关键词:传感器、石墨烯、玻碳电极、抗氧化剂
The construction of graphene modified electrode and its electrochemical detection towards TBHQ
Abstract: In this paper, an efficient electrochemical sensor was fabricated by casting graphene onto a glassy carbon electrode (GR/GCE). The GR/GCE exhibited good performances of high electrode activity, large surface area, prominent antifouling property, and high electron transfer kinetics, which could be used as an effective sensor for the detection of tert-butylhydroquinone (TBHQ). The surface morphology of the constructed GR/GCE was characterized by FE-SEM, and the electrocatalytic activity of the GR/GCE was verified by cyclic voltammetry (CV). It was demonstrated that graphene was uniformly distributed on the surface of GCE, and the resulting modified electrode exhibited excellent electrocatalytic activity toward TBHQ. pH experiments shown that the optimum pH value is 3.0. Under the optimum conditions, the linear range for the detection of TBHQ was 1.2 × 10-6~1.5 × 10-4 mol/L, and the detection limit was 4.0 × 10-7 M. In addition, the proposed method was stable and reproducible. Keywords: sensor; Graphene; glassy carbon electrode; anti-oxidants
前言
油类食品长久放置会导致氧化酸败,加入抗氧化剂可阻止和延缓这一现象,并提高食用油脂和含油食品的稳定性,延长其货架期,所以抗氧化剂被广泛的应用于油脂及含油食品中[1]。TBHQ是国家规定允许少量添加的食用抗氧化剂,它的物理性质如表1所示。跟二丁基羟基甲苯(BHT)、丁羟基茴香醚(BHA)相比,TBHQ由于添加量少,毒性也相对较小。但近年来,动物试验研究表明,TBHQ有抑制人体呼吸酶活性的嫌疑[2]。曾经就有国内某著名快餐连锁店使用德国洋樱集团的TBHQ被媒体曝光事件。根据美国食品药品监督管理局(FDA)的相关规定,TBHQ在油脂中的使用限值是油脂或食物中脂肪的0.02%。使用剂量越大,TBHQ对人和动物的健康的影响也就越大,会产生例如胃癌和DNA的损伤之类的病症。因此,这些抗氧化剂在食品中应用及其添加量日益受到人们的关注,精确、快速地测定油脂及含油食品中合成抗氧化剂对油脂稳定性和安全性极为必要。
表1. 特丁基对苯二酚(TBHQ)的物理性质
分子量 外观 沸点 熔点 气 溶解度
166.22 白色至淡茶色结晶 300℃ 127.5℃ 极微小 微溶于水,溶于大部分有机溶剂及油脂
目前,食品中抗氧化剂的检测技术有比色法(分光光度法)、薄层色谱法、气相色谱法和气相色谱-质谱联用法、电化学分析法、毛细管电泳法、高效液相色谱法(HPLC)和液相色谱-串联质谱法等。然而,比色法和薄层色谱法(TLC)虽然仪器简单、检测成本低,但测量精度差,操作程序繁琐;气相色谱法和气相色谱-质谱联用法精确度高、结果准确,但是检测抗氧化剂时试剂繁多,检测成本昂贵,操作过程复杂;高效液相色谱法和液相色谱-串联质谱法检测速度快、进样量少、分辨率高、易于回收,但是噪音大,检测成本略高,检测前处理繁琐。以上均不是理想的抗氧化剂检测方法[3]。
- 上一篇:一锅法进行双Heck反应研究
- 下一篇:异腈参与的1,3-偶极环加成反应研究
-
-
-
-
-
-
-
中考体育项目与体育教学合理结合的研究
大众媒体对公共政策制定的影响
酸性水汽提装置总汽提塔设计+CAD图纸
电站锅炉暖风器设计任务书
杂拟谷盗体内共生菌沃尔...
十二层带中心支撑钢结构...
当代大学生慈善意识研究+文献综述
java+mysql车辆管理系统的设计+源代码
乳业同业并购式全产业链...
河岸冲刷和泥沙淤积的监测国内外研究现状