菜单
  

    In general, >95% of the part weight(s) should be delivered during the injection step. The final part weight is achieved via the packing and holding step. Packing pressures are typically about half the level of the injection pressure and serve to achieve final part weight(s) and also to allow time for the gates to freeze off before plastication can begin for the next shot.
    During the injection and packing steps, coolant (typically a mixture of ethylene glycol and deionized water if ²45°F) is circulating through the mold. The coolant takes heat out of the mold and therefore out of the part via conduction. Optimum cooling is achieved when the water is in turbulent flow. In general, an increase in coolant flow rate will remove more heat than a decrease in coolant temperature.
    Figure 39. Effect of melt index of polyethylene resin on injection temperature
     
    As resin flows into the mold, the material in contact with the mold surface solidifies very quickly forming a skin layer and an inner flow ‘channel’ through which material continues to flow (Figure 40). As more heat is taken from the plastic by the mold, the flow channel is reduced to the point that no more material will flow. The optimum process parameters should be chosen to allow complete mold fill and pack before the flow channel solidifies completely. Keeping the melt channel open allows for better packing of the extremities of the part. There are also differences in part temperature depending on proximity to the gate.
    Uniform cooling to the mold occurs when the coolant makes one pass through the mold (no looping or connecting of flow channels) and there is only one temperature controller. During even cooling, the gate area is always the hottest area of the part because throughout the injection and packing steps, molten material continues to flow through the gate. The extremities of the part tend to have the lowest temperature since the polymer melt has transferred heat as it has flowed through the cavity.
    Figure 40.
    Differences in part temperature can lead to differential shrinkage and therefore warpage. There are two ways to minimize temperature differentials either through differential cooling or an increase in injection rate.
    Differential cooling involves directing coolant towards the gate area, which has the highest part temperature and away from the extremities where the part temperature is lowest. The typical method is to reduce the coolant flow to the cooling channels nearest the extremities and open up the valves to the channels nearest the gate. Directing the coolant flow from the hotter portions of the tool to the extremities may also be effective in some cases.
    As covered previously, increasing the injection rate will shorten the injection times allowing for a more uniform part temperature.
    Because the cooling step is usually the longest time period in the injection molding cycle, a cold mold temperature is generally recommended. Because of the wide range of mold and part designs, it is very difficult to specify mold temperatures. A typical range of mold surface temperatures for polyolefins is 70-125°F (20-50°C), which requires coolant temperatures of 32-50°F (0-10°C). Materials with lower melting temperatures, such as EVAs, will be at the lower end of the range while the higher melting materials, such as HDPE and PP will be at the higher end. Cold molds, however, tend to give a less glossy surface finish and will restrict the flow of resin within the mold. A cold mold can also lead to a higher amount of molded-in stress within the part. Warmer mold temperatures will increase the gloss level and may also improve resin flow by constricting the melt channel less, at the expense of increased cycle times.
    The injection molder and the mold design typically fix the amount of time needed for the mold to open, eject the part and then close again. Mold open time can be reduced by using only enough daylight to allow the part(s) to fall freely, reducing the amount of time required for air assists and also the number of times the ejector pins activate.
  1. 上一篇:模具热处理英文文献和中文翻译
  2. 下一篇:机械结构英文文献和中文翻译
  1. 立体光照成型的注塑模具...

  2. 计算机辅助工艺规划CAPP系...

  3. 冲压工艺规划和级进模设...

  4. 对热流道系统注塑工艺英文文献和中文翻译

  5. KBE汽车覆盖件冲压工艺路...

  6. 注射成型机配置设计英文文献和中文翻译

  7. 异型件缠绕成型的研究英文文献和中文翻译

  8. 中考体育项目与体育教学合理结合的研究

  9. 乳业同业并购式全产业链...

  10. 杂拟谷盗体内共生菌沃尔...

  11. java+mysql车辆管理系统的设计+源代码

  12. 河岸冲刷和泥沙淤积的监测国内外研究现状

  13. 酸性水汽提装置总汽提塔设计+CAD图纸

  14. 十二层带中心支撑钢结构...

  15. 当代大学生慈善意识研究+文献综述

  16. 大众媒体对公共政策制定的影响

  17. 电站锅炉暖风器设计任务书

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回