Here,attention to automation is key to providing shipdesigners with fast turnaround solutions andreasonably accurate predictions for early stagedesign.A demonstration of a shape optimizationframework has been performed using the JHSShull concept as the hull form of interest. Apreliminary study was performed using a fastlow-order solution method, and allowing theentire hull to be perturbed. In addition, twoseparate localized design studies were carriedout, starting from a baseline bow configurationthat was examined in a model test carried out atthe Naval Surface Warfare Center—CarderockDivision. The objective function was the totalresistance, and design constraints were placed onthe total displacement, and on the region of theship hull that was allowed to change, in thiscase only the bow. The results of the shapeoptimization procedure demonstrated someimprovements to the bow section that produceda reduction in total resistance of up to about 6%.The eventual goal of this effort is to be able toimplement a hull form optimization strategywithin the CREATE IHDE. The current plan isfor this process to include a suite of differentfidelity tools to arrive more efficiently at anoptimum solution. The envisioned processwould include using fast, robust potential flowsolution methods to sweep the design space andcreate a response surface of the influence ofgeometry changes on the objective function (e.g.,total resistance). To these results would be addeda series of nonlinear resistance evaluations,which would be used to modify the responsesurface for use in the optimization procedure.It is the hope that this will provide a balancebetween solution accuracy and time to solutionthat will be attractive to the ship design commu-nity.Work related to implementing the necessarytools for performing nonlinear resistance evalu-ations within the optimization framework isongoing.With the ongoing development of this technol-ogy, it is our hope and intent that the use ofhydrodynamic evaluation and optimizationtools within the CREATE IHDE design environ-ment will aid current and future ship designers.The capability from this effort has the potentialto significantly impact directly the issues that areof concern for current and future acquisitionprograms for US Navy ships.AcknowledgmentsThis effort has been partially funded by theNSWC Carderock Division Board of DirectorsTechnical Capability Stewardship Funds and the
摘要在学术研究,海洋设计和工业制造业的很多领域内,人们对外形优化的研究兴趣与日俱增。作为计算研究,工程采购工具,和环境船舶流体力学产品的部分,我们正在努力开发一个计算工具集和过程框架,有助于船舶设计师做出关于设计好的船体形状的水动力特性影响的明智决定,即使在初步阶段,一个决断也可以对成本产生重大的影响。这一项目的主要目标是利用从使用这些方法中增加的经验来评估形状优化技术以及它们可能会如何影响当前和未来的海军舰艇设计。此外,这项工作的目的是建立一个范围协同设计环境的优化框架,将能够改善性能并在初步阶段更好的理解船体初步设计。这里演示的第一个项目的目标是船舶阻力,例子所示的船和局部艏声呐导流罩成型与船体联合高速海上补给的概念有关。源:自;751'-论.文,网·www.751com.cn/
引言任何船舶设计本身就涉及了优化,竞争要求和设计元素迫使设计去发展,而且时间、预算和性能要求可能是设计师努力提供最有效和高效的平台的约束条件。大量对水动力优化的计算流体动力学工具的应用,主要是减少静水阻力和波形,证明了对优化的持续增长的兴趣。此外,最近在美国海军的船舶设计项目说明一些任务与性能需求的基本变化,并且未来船舶设计可能和当前舰队完全不同。设计这样的新概念的一个难题在执行设计研究时缺乏可借鉴的经验;因此,优化技术可能特别有用。这些问题需要在船舶初步设计阶段使用的工具具有更大的精确度,坚固性和易用性。计算研究与工程采集工具及环境公司试图通过他的开发和部署设置计算工程的设计和分析工具计划来解决这个。人们期待电脑的发展能完成高度精确的设计并且可以进行整个设计过程的分析研究。为了评估候选人的设计和更彻底地探索设计空间,形状优化是CREATE船舶流体力学产品的一个重要组成部分。当前程序开发计划包括快速参数化代码绑定设计空间和更准确的RANS编码来更好地定义指定船体的几何和表现形式。潜在的水动力形状优化船体已经展示了各种不同的形式,包括多体船,在相关工作中(见 Wilson等,2009;Stern等,2007;Campana等,2006,2009)。工具基本上是在为表现水动力形状优化船体形式工作,但是向海军,包括功能可用的方案和流程和验证预测能力证明这个能力是目前船体形式感兴趣的,还需要很大的努力。
- 上一篇:感应电动机直接转矩控制算法英文文献和中文翻译
- 下一篇:船舶设计多维问题的元建模技术英文文献和中文翻译