菜单
  

    SICFP'09, 2009, Linköping, Sweden, 2009.[11] T. Lin, Q. Wang, B. Hu, W. Gong, Research on the energy regeneration systems forhybrid hydraulic excavators, Automation in Construction 19 (2010) 1016–1026.[12] S. Cetinkunt, U. Pinsopon, C. Chen, A. Egelja, S. Anwar, Positive flow control ofclosed-center electrohydraulic implement-by-wire systems for mobile equip-ment applications, Mechatronics 14 (2004) 403–420.[13] X. Lin, S. Pan, D. Wang, Dynamic simulation and optimal control strategy for aparallel hybrid hydraulic excavator, Journal of Zhejiang University. ScienceA 9(5) (2008) 624–632.[14] D. Wang, C. Guan, S. Pan, M. Zhang, X. Lin, Performance analysis of hydraulic ex-cavator powertrain hybridization, Automation in Construction 18 (2009)249–257.[15] Q. Xiao, Q.Wang, Y. Zhang, Control strategies of power systemin hybrid hydraulicexcavator, Automation in Construction 17 (2008) 361–367.[16] R. Kordak, Hydrostatic Transmission Drives with Secondary Control, Bosh RexrothAG, 2003.[17] R. Rahmfeld, Development and control of energy saving hydraulic servo drives,Proc. of 1st FPNI-PhD Symposium, Hamburg, 2000, pp. 167–180.[18] L. Guo, H. Schwarz, A control scheme for bilinear systems and application to a sec-ondary controlled hydraulic rotary drive, Proc. of 28th Conference on Decisionand Control, Tampa, Florida, 1989, pp. 542–547.[19] H. Berg, M. Ivantysynova, Design and testing of a robust linear controller for sec-ondary controlled hydraulic drive, Proceedings of the IMechE 213 (1999)375–386.[20] C.S. Kim, C.O. Lee, Robust speed control of a variable-displacement hydraulicmotor considering saturation nonlinearity, ASME 122 (2000) 196–201.[21] J.Y. Chen, Rule regulation of fuzzy sliding mode controller design: direct adaptiveapproach, Fuzzy Sets and Systems 120 (2001) 159–168.[22] C.Y. Lee, P.C. Tung,W.H. Chu, Adaptive fuzzy sliding mode control for an automat-ic arc welding system, International Journal of Advanced Manufacturing Technol-ogy 29 (2006) 481–489.[23] B.J. Choi, S.W. Kwak, B.K. Kim, Design of a single-input fuzzy logic controller andits properties, Fuzzy Sets and Systems 106 (1999) 299–308.[24] J. Hao, S. Ikeo, Y. Sakurai, T. Takahashi, Energy saving of a hybrid vehicle using aconstant pressure system, JFPS 30 (1999) 20–27.[25] C.S. Kim, C.O. Lee, Speed control of an overcentered variable displacement hy-draulic motor with a load torque observer, Control Engineer Practice 4 (1996)1563–1570.[26] A. Pourmovahed, N. Beachey, F. Fronczak, Modeling of a hydraulic energy regen-eration system — part I: analytical treatment, ASME 114 (1992) 155–159.[27] J.J.E. Slotine, W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ,1991.[28] L.X. Wang, Adaptive Fuzzy System and Control: Design and Stability Analysis,Prentice-Hall, Englewood Cliffs, NJ, 1994.

    摘要此研究项目中提出了一种新型液压能量再生系统并建立了相应模型。该系统是一个基于封闭回路的静液压传动装置,用液压蓄能器作为能量存储,用来恢复动能,不需要任何流体流动逆转。辅助单元的位移量减少可以增加几种液压泵/马达使用效率。根据其物理属性可以为系统建立模型。控制系统中,设计了一个自适应模糊滑模控制模块来实现二级单位的速度控制,同时我们也分析了系统的能量回收效率,并且通过仿真和实验评估了控制系统的数学模型的有效性。实验结果表明,所设计的系统是有效的,往返回收效率为22%~59%。

    绪论由于燃料价格的增加和环境污染,节约能源已经变得越来越重要。节能系统基于混合动力概念轿车,卡车推土机和施工机械(即,轮式装载机,挖掘机,收割机)进行了研究,以减少能源消耗和废气排放。节能系统可分为若干类型:电,机械,使用电池的液压系统,飞轮,液压蓄能器,节能系统。这些节能系统的结构、特点和适用性在以前进行过总结和分析。由于它的高回收效率和高比功率,液压节能系统是一种非常有希望的技术。

  1. 上一篇:极简主义在艺术和设计英文文献和中文翻译
  2. 下一篇:绿化设计对城市房地产市场的影响英文文献和中文翻译
  1. 液压泵系统识别方法比较英文文献和中文翻译

  2. 液压疲劳试验机电动机无...

  3. 液压系统英文文献及中文翻译

  4. 辅机试验台液压系统设计任务书

  5. 液压缸起重器和柱塞英文文献和中文翻译

  6. 开关磁阻电机液压机电液...

  7. 直线运动轨迹跟踪控制挖...

  8. 十二层带中心支撑钢结构...

  9. 酸性水汽提装置总汽提塔设计+CAD图纸

  10. 中考体育项目与体育教学合理结合的研究

  11. 大众媒体对公共政策制定的影响

  12. 河岸冲刷和泥沙淤积的监测国内外研究现状

  13. 当代大学生慈善意识研究+文献综述

  14. 杂拟谷盗体内共生菌沃尔...

  15. java+mysql车辆管理系统的设计+源代码

  16. 乳业同业并购式全产业链...

  17. 电站锅炉暖风器设计任务书

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回