[9] CAO J, BOYCE M C. A predictive tool for delaying wrinkling and tearing failures in sheet metal forming [J]. ASME Journal of Engineering Materials and Technology, 1997, 119: 354-365.
[10] NEIL K, CAO J. Estimation of optimal blank holder force trajectories in segmented binders using an ARMA model [J]. ASME Journal of Manufacturing Science and Engineering, 2003, 125:763-770.
[11] SUN C Z, CHEN G L, LIN Z Q. Determining the optimum variable blank-holder forces using adaptive response surface methodology (ARSM) [J]. International Journal of Advanced Manufacturing Technology, 2004, 26: 23-29.
[12] SHENG Z Q, JIRATHEARANAT S, ALTAN T. Adaptive FEM simulation for prediction of variable blank holder force in conical cup drawing [J]. International Journal of Machine Tools and Manufacture, 2004, 44: 487-494.
[13] AYED L B, DELAMÉZIÈRE A, BATOZ J L. Optimization of the blank holder force distribution with application to the stamping of a car front door panel (Numisheet'99) [C]//The 6th International Conference and Workshop on Numisheet'05. MI, USA, 2005: 849-854.
[14] LIN Z Q, WANG W R, CHEN G L. A new strategy to optimize variable blank holder force towards improving the forming limits of aluminum sheet metal forming [J]. Journal of Materials Processing Technology, 2007, 183(2): 339-346.
[15] XU S, LANKER T, ZHANG J. Specification for BM1: Decklid inner panel [C]//The 6th International Conference and Workshop on Numisheet'05. MI, USA, American Institute of Physics, 2005:1137-1149.
[16] Livermore Software Technology Corporation. LS-DYNA keyword user’s manual [M]. vol. 1, Version 971, California, Livermore.
2.外文资料原文(与课题相关,至少1万印刷符号以上):
Abstract: A VBHF (Variable Blank Holder Force) optimization strategy was employed to determine the optimal time-variable and spatial-variable BHF trajectories, aiming at improving the formability of automobile panels with aluminum alloy sheet. The strategy was implemented based on adaptive simulation to calculate the critical wrinkling BHF for each segmented binder of the Numisheet’05 deck lid in a single round of simulation. The thickness comparison of the stamped part under optimal VBHF and constant BHF shows that the variance of the four sections is decreased by 70%, 44%, 64% and 61%, respectively, which indicates significant improvement in thickness distribution and variation control. The investigation through strain path comparison reveals the fundamental reason of formability improvement. The study proves the applicability of the new VBHF optimization strategy to complex parts with aluminum alloy sheet.
Key words: deep drawing; variable blank holder force; aluminum alloy sheet; formability
1 Introduction
Wrinkling and cracking are two key surface issues for deep drawing parts, besides which there are other product quality requirements including uniform thickness, strain distortion, springback, etc. Engineers and researchers would normally try to regulate one or several of the process parameters such as initial blank contour, friction condition, drawbead resistance and blank holder force (BHF, FBH)[1 4] to achieve successful drawing parts free of above defects.
In terms of BHF regulation, time-variable and spatial-variable BHFs occur in industrial deep drawing process, but typically not in an optimal manner[5]. Researchers started to build system for improving the application of variable blank holder force (VBHF) to reduce the work load associating with die surface grinding and cushion shimming. The first system established by HARDT and LEE[6] was designed to maintain a constant amount of buckling in unsupported region of the part. This work was continued by HARDT
and FENN[7], who employed closed-loop control of sheet forming operation to determine optimal BHF trajectories. SIEGERT[8] designed a blank holder made up of rigid segmented sections, providing independent control over the material.
- 上一篇:液压缸起重器和柱塞英文文献和中文翻译
- 下一篇:超精密工程与纳米技术英文文献和中文翻译
-
-
-
-
-
中考体育项目与体育教学合理结合的研究
乳业同业并购式全产业链...
当代大学生慈善意识研究+文献综述
酸性水汽提装置总汽提塔设计+CAD图纸
大众媒体对公共政策制定的影响
河岸冲刷和泥沙淤积的监测国内外研究现状
杂拟谷盗体内共生菌沃尔...
java+mysql车辆管理系统的设计+源代码
十二层带中心支撑钢结构...
电站锅炉暖风器设计任务书