菜单
  

    3. To form a database on the past design activities which can help future design attempts. It should be easy to retrieve data and information by using a query facility on the database.
     The database is formed and updated after each design session. At the end of every session, the system parameters, design specifications, control structure selected, control parameters obtained, design analysis results as well as written comments from the designer is stored as a relational database, together with basic information of the design session such as identity number, date, time and name of the designer. This is a very useful facility for the automated documentation of the design session. As the current version of CSDA is concerned with linear control system design only, the problem of traceability between derivative models does not appear. However, if CSDA is expanded in the future, then information on relationships between different models has to be stored by introducing reference pointers in each database item.
    3. Analysis/Design Block
    This block is the core of the CSDA system. Details of the control structure selection module and the control parameters calculation module are explained here. A pre-design analysis module and a post-design analysis module are mentioned briefly. A command signal generation module and a parameter optimizer module will be included in the future. The authors have examined several control algorithms to select a satisfactory control structure and its parameters. These algorithms are written as user-defined functions in MATLAB. One special feature of the CSDA system is an “Auto design” button. This button aims to give an automated design solution to the user. This includes a selection of the control structure and a suitable design of the controller parameters. The previous results in designing a controller are also saved. Hence, the system can also choose a satisfactory control structure and decide on its parameters with reference to previous design results.
    新的适应CBR方法结合关系分析机械设计问题解决方案.论文网
    基于案例的推理(CBR)方法被证明是一种很有前途的方法在确定新的机械产品的参数值调整以前成功的解决当前的问题。较复杂的情况下检索技术,适应下最后在CBR研究仍然是一个瓶颈问题,迫切需要解决。根据参数机械设计(PMD)的特点,即。,更少的数据,许多参数,本文采用加权平均数(WM)作为基本模型,并提出了一种新的适应CBR方法PMD的结合问题解决方案(PS)关系的信息。之前在我们提出的适应方法,适应类似的情况下,灰色关联分析(草)是利用调查PS关系信息隐藏在K检索情况下,该方法称为GRA-WM。不同于古典WM方法,检索案例为每个解决方案元素的权重因子适应计算相似度矩阵(SM)和关系矩阵乘以(RM)和新的机械产品的调整解决方案价值随后通过计算解决方案的加权平均的K值相似的情况下。电力变压器设计的案例研究证明GRA-WM的工业适用性。此外,实证比较GRA-WM和其他适应方法进行验证其优越性。实证结果表明,GRA-WM可以提供一个可接受的适应提议在CBR应用机械设计.
  1. 上一篇:注塑模具单一浇口改善英文文献和中文翻译
  2. 下一篇:空调系统英文文献和中文翻译
  1. 液压泵系统识别方法比较英文文献和中文翻译

  2. 注塑模具的设计及其热分...

  3. 船舶设计最佳船型的敏感...

  4. 车身外表面变形校正方法英文文献和中文翻译

  5. 成形预测级进模冲压件多...

  6. 级进模确定弯曲顺序新方...

  7. 数控车床上磨削主轴的分析

  8. 十二层带中心支撑钢结构...

  9. 大众媒体对公共政策制定的影响

  10. 当代大学生慈善意识研究+文献综述

  11. 杂拟谷盗体内共生菌沃尔...

  12. 酸性水汽提装置总汽提塔设计+CAD图纸

  13. 乳业同业并购式全产业链...

  14. 中考体育项目与体育教学合理结合的研究

  15. java+mysql车辆管理系统的设计+源代码

  16. 电站锅炉暖风器设计任务书

  17. 河岸冲刷和泥沙淤积的监测国内外研究现状

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回