摘要:随着高效、绿色、可再生的能源得到了人们越来越多的关注,高输出功率、高充 放电效率、长循环寿命、高循环稳定性的新型储能电源的超级电容器应运而生。本课题 对超级电容器中所使用的石墨烯基复合电极材料进行了探讨和研究,采用水热反应法制 备了石墨烯和镍钴氢氧化物复合材料。使用 X 射线衍射(XRD)分析法和扫描电镜(SEM) 对不同条件下获得的电极材料的结构和形貌进行分析。使用循环伏安法和恒流充放电法 对电极材料在三电极体系中的电化学性能进行了探讨。实验结果发现掺入不同含量的氧 化石墨烯产物的结构、形貌和电化学性能也出现了变化。当氧化石墨烯溶液与金属盐溶 液的体积比为 1:1 时,电化学性能最好。当扫描速率为 2mv/s 和 50mv/s 时,比电容分别 为 509.98F/g 和 212.33F/g;电流密度为 0.7A/g 和 7A/g 时,比电容分别为 554F/g 和 320F/g。67334
毕业论文关键词:超级电容器;石墨烯基;复合电极材料;镍钴氢氧化物
Preparation of Graphene - based Composite Electrode Materials
Abstract : More and more people are concerned about the efficient, green, renewable energy,the high output power, high charge and discharge efficiency, long cycle life, high cycle stability of the new energy storage super capacitor came into being.In this paper, the graphene-based composite electrode materials used in the supercapacitor were studied and studied. The graphene and nickel cobalt hydroxide composites were prepared by hydrothermal reaction method.The structure and morphology of the electrode materials obtained under different conditions were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM).The electrochemical properties of the electrode materials in the three - electrode system were investigated by cyclic voltammetry and constant current charge - discharge method.The experimental results show that the structure, morphology and electrochemical properties of the graphene oxide products with different contents are also changed.When the volume ratio of the graphene solution to the metal salt solution is 1: 1, the electrochemical performance is the best.When the scanning current is 2mv/s and 50mv/s, the specific capacitance is 509.98F/g and 212.33F/g respectively. When the current density is 0.7A/g and 7A/g, the specific capacitance is 554F/g and 320F/g.
Keywords: super capacitor;graphene;composite electrode material;nickel cobalt hydroxide
目录
1 绪论 1
1.1 引言 1
1.2 超级电容器的技术发展 2
1.3 超级电容器的特性原理 2
1.4 石墨烯的制备方法 3
1.5 超级电容器电极材料种类 4
1.5.1 碳基电极材料 4
1.5.2 石墨烯/金属氧化物复合材料 4
1.5.3 石墨烯/导电聚合物复合材料 5
1.6 超级电容器应用展望 5
1.6.1 商业用电源 5
1.6.2 工业用电源 5
1.6.3 混合动力汽车 6
1.7 课题的目的与意义 6
2 实验部分 8
2.1 试剂与仪器 8
2.1.1 试剂 8
2.1.2 仪器