菜单
  
    摘要:碳材料凭借其电极电位低,循环效率高,循环寿命长和安全性能好等优点成为锂离子电池的首选负极材料。目前商业生产中普遍使用传统石墨电极,其理论容量仅为372mAh/g,远远达不到我们对高性能锂离子电池的要求。本文旨在探索简易、大量制备新型纳米级碳材料用作高性能锂离子电池电极材料,开展的主要工作如下:在不同温度下(550℃、700℃和1100℃)运用高温催化裂解法制得碳包铁纳米颗粒,再通过酸洗和真空热处理依次除去铁核以及掺杂模板,得到多孔壁碳纳米笼并用于制成锂离子电池负极材料。研究不同制备温度下碳纳米笼的结构与形貌特性对锂离子电池性能上的影响。结果表明制备温度越高,石墨化程度越好,碳纳米笼结构越稳定,电池寿命也越长,但是,比表面积也相应减少,电池储锂能力减弱。因此,在700℃制备的多孔壁碳纳米笼兼具有良好石墨化程度和高比表面积的优点,相比于其他碳负极材料,具有可逆容量高,循环容量高,稳定性好等优势,具有很好的商业化前景。41770
    毕业论文关键字:碳纳米笼;高比表面积;负极材料;锂离子电池
     Synthesis of porous-walled carbon nanocages towards high performance anodes of lithium-ion batteries
    Abstract: Amongst the candidates for the anode materials of lithium-ion batteries, carbonaceous materials are dominant because of their outstanding properties. Graphite, the mainstay of the commercial anode materials, delivers a limited specific capacity of 372mAh/g, which can hardly meet the requirement of high-performance lithium-ion batteries. In this work, facile and large production of graphitic nanomaterials has been carried out towards high performance lithium-ion batteries. Majority of our work has been listed as followed: utilizing catalytic pyrolysis to produce GNCs at different temperature(550, 700 and 1100 ºC), and then removing the core of the particle by acid-treatment and removing doping structure by air-oxidization at 300 ºC to get graphitic nanocages (GNCs) with porous shells, which are used as the anodes for lithium-ion battery. According to the performance of GNCs prepared at different temperature, their graphitization and stability were enhanced, with synthetic temperature rising, which traded off specific surface area and capacity as well. Thus, the porous shell GNCs produced at 700 ºC with both high graphitization and specific surface area leads to its high reversible capacity and good stability. Such prepared GNCs would be a promising anode material towards Li ion battery applications.
    Key Words:Carbon nanocages; High specific surface area; anode materials; Lithium-ion batteries
    目 录
    1 绪论    1
    1.1 碳材料简介    1
    1.2 碳的同素异形体    2
    1.2.1 碳的价键结构    2
    1.2.2 富勒烯    2
    1.2.2 碳纳米管    3
    1.2.3 空心碳纳米笼    4
    1.2.4 石墨烯    4
    1.3 碳纳米材料的制备方法    5
    1.3.1 模板法    6
    1.3.2 化学气相沉积法    7
    1.3.3 催化裂解法    7
    1.4 碳纳米材料的应用    7
    1.4.1 在超级电容器中的应用    7
    1.4.2 在锂离子电池中的应用    8
    1.4.3 碳纳米材料作为催化剂载体    8
    1.5 锂离子电池简介    9
    1.6 本文的主要研究内容和意义    11
    2 实验部分    12
    2.1 材料制备    12
    2.1.1 原料试剂    12
    2.1.2 实验设备    12
    2.1.3 碳纳米笼的制备    12
    2.2 材料性能表征    13
  1. 上一篇:Z12CN13马氏体不锈钢材料的再结晶临界应变研究
  2. 下一篇:高比表面积大孔隙率吸附树脂的研制
  1. 500μm微型弹簧微纳米加工技术研究

  2. Al-Cu合金中刃位错运动与纳...

  3. 硬模板法制备纳米级二氧...

  4. 纳米粒子修饰的LSCF阴极材料研究

  5. 纯钛表面纳米化及其生物活性的研究

  6. 膨胀石墨的表面修饰与纳米复合材料的制备

  7. TiO2基纳米自清洁玻璃的制备和表征

  8. java+mysql车辆管理系统的设计+源代码

  9. 电站锅炉暖风器设计任务书

  10. 中考体育项目与体育教学合理结合的研究

  11. 酸性水汽提装置总汽提塔设计+CAD图纸

  12. 十二层带中心支撑钢结构...

  13. 河岸冲刷和泥沙淤积的监测国内外研究现状

  14. 大众媒体对公共政策制定的影响

  15. 当代大学生慈善意识研究+文献综述

  16. 乳业同业并购式全产业链...

  17. 杂拟谷盗体内共生菌沃尔...

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回